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1. INTRODUCTORY EXAMPLES:
A SPECIAL CASE OF THE CONVERGENCE THEOREM

It is well-known that L p convergence (0 < p < 00) of a sequence of
functions {In}:~l to a continuous limit f does not imply uniform convergence
of {In} to f This is illustrated by the following simple example.

EXAMPLE 1. For n = 1,2,... let

fn(x) = 1 + 2n(x - (1/2)),

= 1 - 2n(x - (1/2)),

= 0, otherwise.

if 0/2) - I/(2n) ~ x < 1/2,

if 1/2 ~ x < (1/2) + I/(2n),

Then for °< P < 00, limn~O() J~ Ifn(x)IP dx = O. However {In} does not
converge uniformly to f(x) -- °on [0, 1] sincefnO/2) = 1 for all n ;;:, 1.

One might conjecture that if each fn is increasing (fn(xI ) ~ fn(x2) for
Xl ~ x 2) then L p convergence, say in [0, 1], would imply uniform convergence
there. A simple example shows this to be false.

EXAMPLE 2. Let 0 < P < 00 and, for n = 1,2,... , °~ X ~ 1, let
fn(x) = x n. Again limn~O() J~ Ifn(x)IP dx = 0 but {In} does not converge
uniformly to f(x) == °on [0, 1].

In Example 2 the sequence {In} converges uniformly to f on every closed
subinterval of [0, 1] which does not include the right end point x = 1. This
suggests the following theorem. (All the following integrals are Lebesgue
integrals.)

THEOREM 1. Let f be a real, continuous function on the finite interval (a, b).
Let {In},'::=l be a sequence of increasing functions on (a, b) such that
Iimn~O() .fa Ifn(x) - f(x) Ip dx = 0, where 0 < p < 00. Then for any c and d
with a < c < d < b, the sequence {In} converges uniformly to f on [c, d].
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Proof By contradiction. Assume the conclusion is false. Then there
exist c, d with a < C < d < b, E > 0, a subsequence of {In} (again denoted
by {In} for convenience) and a sequence {Xn}:~l of points in [c, d] such that
Ifn(xn) - f(xn)1 ;?: E for all n ;?: 1. The sequence {xn} has a convergent
subsequence (again denoted by {xnD with limit, call it y, in [c, d]. By the
.::ontinuity offat y there exists 8 with 0 < 8 :(; min{c - a, b - d} such that
I x - y I < 8 implies If(x) - f(y)1 < E/3. There exists an N ;?: 1 such that
if n ;?: N then I X n - Y I < 8/2. Let n ;?: N.

Case 1. fn(xn);?: f(xn) + E. Then for every x in (y + (8/2), y + 8)
we have

fn(x) ;?: fn(xn) ;?: f(xn) + E

= (f(xn) - fey»~ + (f(y) - f(x» + f(x) + E

> -(E/3) - (E/3) + f(x) + E = f(x) + (E/3).

SO fn(x) - f(x) > E/3 for all x in (y + (8/2), y + 8).

Case 2. fn(xn):(; f(xn) - E. By proceeding as in Case lone shows that

fn(x) - f(x) < -E/3 for all x in (y - 8, y - (8/2».

In either case Ifn(x) - f(x)1 > E/3 for all x in an interval of length 8/2.
Thus f: Ifn(x) - f(x}[P dx > (E/3)p . 8/2 for all n ;?: N, which contradicts
limn _ oo f: Ifn(x) - f(x}[P dx = O. This completes the proof.

2. THE GENERAL CONVERGENCE THEOREM

It is natural to try to generalize Theorem 1 by replacing the monotonicity
condition with convexity or with monotonicity of higher order. (fn is convex
on (a, b) iff

whenever a < Xl ~ X2 < band 0 :(; a :(; 1.) Monotonicity of higher order
can be defined in terms of divided differences (a discussion of divided
differences can be found in books on numerical analysis, e.g. [1]). The
first-order divided difference of fn isfn[xo , Xl] = [fn(xI ) - fn(xo)]/(xi - xo).
Clearly fn is increasing on (a, b) iff fn[xo ,Xl] ;?: 0 for all distinct Xo , Xl in
(a, b). The second-order divided difference offn is

fn[xo , Xl , x2] = (fn[xi , x2] - fn[xo , XI ])/(X2 - xo)·

It is straightforward to verify thatfn is convex on (a, b) ifffn[xo , Xl , x 2] ;?: 0
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(1)

for all distinct Xo , Xl , X2 in (a, b). The kth order (k ? I) divided difference
of fn can be expressed by the following formula:

k [ k ]j~[xo , Xl"'" xd = j~O fnCXj)III (x; - Xi) •

i:l=i

Monotonicity of fn of order k ? I on (a, b) is the condition that either
fn[xo ,... , x k] ? 0 for all distinct Xo ,... , Xk in (a, b) orfn[xo ,... , xd :s;; 0 for all
such Xo ,... , Xk . (It is known that monotonicity offn of order k ? 2 on (a, b)
implies that f~k-2) exists and is continuous on (a, b), cf. [2, p. 381]). Our
main result is the generalization of Theorem I by replacing "increasing"
with monotonicity of order k. For completeness we have included in the
statement of the theorem two other conditions which imply monotonicity
of order k.

Denote by Llhkfn(x) the forward difference of kth order of fn using
x, X + h, ..., X + kh (cf. [1, p. 214]).

THEOREM 2. Let f be a real, continuous function on the finite
interval (a, b). Let Un}~~l be a sequence of real functions such that
limn _ oo f~ Ifn(x) - f(x)jP dx = 0, where 0 < p < 00. Then for any c and d
with a < c < d < b, each of the following conditions implies that Un}
converges uniformly to f on [c, d]:

(1) There exists a positive integer k such that f~;)(x) exists and is ? 0
for all X in (a, b) and for all n ? I.

(2) Eachfn is bounded in (a, b) and there exists a positive integer k such
that if h > 0 and X and X + kh are in (a, b), then Llhkfn(x) ? 0 for all n ? 1.

(3) There exists a positive integer k such that fn[xo , ... , Xk] ? 0 for all
distinct Xo , ... , Xk in (a, b) and for all n ? 1.

Proof We will show that (I) implies (3), (2) implies (3), and (3) implies
the conclusion of the theorem.

(a) That (1) implies (3) follows from the fact that if Xo ,... , Xk are distinct
points of (a, b) and n ? I, then fn[xo ,... , Xk] = f<;)(f)/k! for some g in
(a, b) (cf. [I, p. 210]).

(b) That (2) implies (3) is stated in [3, p. 49].

(c) To show that (3) implies the conclusion of the theorem, assume the
conclusion is false. Then there exist c and d satisfying a < c < d < b, E > 0,
a subsequence of Un} (again denoted by Un}), and a sequence {Xn}~_l of
points in [c, d] such that Ifn(xn) - f(xn)1 ? E for all n. The sequence {xn}
has a convergent subsequence (again denoted by {xn}) with limit, call it y, in
[c, d]. By the continuity offaty there exists 0 with 0 < 0 :s;; min{c - a, b - d}
such that I x - y I < 0 implies If(x) - f(y)[ < E/(4k + 2)k+l.
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Let Yi = Y + [io/(2k + 1)] for all integral i, -(2k + 1) :(; i :(; 3. There
exists an N1 ;?; I such that for all n ;?; N1 there is a point tn.i in (Y2i-1 , Y2i),
for i = -k, ... , - I, and a point tn.1in (Y2' Y3) satisfying lfn(tn.i) - f(tn.i)1 <
E/(4k + 2)"+1 for all i. (If not, we would have a subsequence {In} with,
Ifn.(x) - f(x)1 ;?; E/(4k + 2)"+1 for all x in an interval of length 0/(2k + I);
thi~ would contradict limn~oc f~ Ifn(x) - f(x)1 P dx = 0.) Notice

2E
lfn(tn.i) - f(Y)1 :(; Ifn(tn.i) - f(tn.i)1 + If(tn.i) - f(y)1 < (4k + 2)k+1'

Since {xn} converges to Y, there exists an N 2 ;?; 1 such that if n ;?; N 2 then
I X n - Y I < 0/(2k + I). Let n ;?; max{Nl , N2}.

Case 1. fn(xn):(; f(xn) - E. We show fn[tn.-k ,... , tn.-I, Xn] < O. For
notational convenience set tn •o == X n •

Since a constant can be subtracted from a function without changing its
divided difference of any order, we have

fn[tn.-k ,... , tn.-I' X n]

= Un - f(y))[tn.-k '00" tn.-I, X n]

fn(xn) - fey) + I fn(tn.i) - fey)
ni~-k (Xn - tn.i) i~-k n~~-k.i#i (tn.; - tn.i)

-E E/(4k + 2)k+1 2E/(4k + 2)"+1
< (20)k + (0/(2k + l))k + k (0/(2k + I))k

E [ (2k + l)k 2k(1 + 2k)]
= (20)k -I + (4k + 2)k+1 < O.

This contradicts hypothesis (3).

Case 2. fn(xn);?; f(xn) + E. By proceeding as in Case lone shows that
fn[tn.-(k-1) ,... , tn.-I, tn.1 , X n] < 0, a contradiction. This completes the proof.
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