L_{p} Convergence of Monotone Functions and their Uniform Convergence

James T. Lewis and Oved Shisha

Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881

1. Introductory Examples:
 A Special Case of the Convergence Theorem

It is well-known that L_{p} convergence $(0<p<\infty)$ of a sequence of functions $\left\{f_{n}\right\}_{n=1}^{\infty}$ to a continuous limit f does not imply uniform convergence of $\left\{f_{n}\right\}$ to f. This is illustrated by the following simple example.

Example 1. For $n=1,2, \ldots$ let

$$
\begin{array}{rlrl}
f_{n}(x) & =1+2 n(x-(1 / 2)), & & \text { if } \quad(1 / 2)-1 /(2 n) \leqslant x<1 / 2, \\
& =1-2 n(x-(1 / 2)), & & \text { if } \quad 1 / 2 \leqslant x<(1 / 2)+1 /(2 n), \\
& =0, \quad \text { otherwise. }
\end{array}
$$

Then for $0<p<\infty, \lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)\right|^{p} d x=0$. However $\left\{f_{n}\right\}$ does not converge uniformly to $f(x) \equiv 0$ on $[0,1]$ since $f_{n}(1 / 2)=1$ for all $n \geqslant 1$.
One might conjecture that if each f_{n} is increasing $\left(f_{n}\left(x_{1}\right) \leqslant f_{n}\left(x_{2}\right)\right.$ for $x_{1} \leqslant x_{2}$) then L_{p} convergence, say in [0,1$]$, would imply uniform convergence there. A simple example shows this to be false.

Example 2. Let $0<p<\infty$ and, for $n=1,2, \ldots, 0 \leqslant x \leqslant 1$, let $f_{n}(x)=x^{n}$. Again $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)\right|^{p} d x=0$ but $\left\{f_{n}\right\}$ does not converge uniformly to $f(x) \equiv 0$ on $[0,1]$.

In Example 2 the sequence $\left\{f_{n}\right\}$ converges uniformly to f on every closed subinterval of $[0,1]$ which does not include the right end point $x=1$. This suggests the following theorem. (All the following integrals are Lebesgue integrals.)

Theorem 1. Let f be a real, continuous function on the finite interval (a, b). Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of increasing functions on (a, b) such that $\lim _{n \rightarrow \infty} \int_{a}^{b}\left|f_{n}(x)-f(x)\right|^{p} d x=0$, where $0<p<\infty$. Then for any c and d with $a<c<d<b$, the sequence $\left\{f_{n}\right\}$ converges uniformly to f on $[c, d]$.

Proof. By contradiction. Assume the conclusion is false. Then there exist c, d with $a<c<d<b, \epsilon>0$, a subsequence of $\left\{f_{n}\right\}$ (again denoted by $\left\{f_{n}\right\}$ for convenience) and a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of points in [$\left.c, d\right]$ such that $\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right| \geqslant \epsilon$ for all $n \geqslant 1$. The sequence $\left\{x_{n}\right\}$ has a convergent subsequence (again denoted by $\left\{x_{n}\right\}$) with limit, call it y, in [$\left.c, d\right]$. By the continuity of f at y there exists δ with $0<\delta \leqslant \min \{c-a, b-d\}$ such that $|x-y|<\delta$ implies $|f(x)-f(y)|<\epsilon / 3$. There exists an $N \geqslant 1$ such that if $n \geqslant N$ then $\left|x_{n}-y\right|<\delta / 2$. Let $n \geqslant N$.

Case 1. $f_{n}\left(x_{n}\right) \geqslant f\left(x_{n}\right)+\epsilon$. Then for every x in $(y+(\delta / 2), y+\delta)$ we have

$$
\begin{aligned}
f_{n}(x) & \geqslant f_{n}\left(x_{n}\right) \geqslant f\left(x_{n}\right)+\epsilon \\
& =\left(f\left(x_{n}\right)-f(y)\right)+(f(y)-f(x))+f(x)+\epsilon \\
& >-(\epsilon / 3)-(\epsilon / 3)+f(x)+\epsilon=f(x)+(\epsilon / 3) .
\end{aligned}
$$

So $f_{n}(x)-f(x)>\epsilon / 3$ for all x in $(y+(\delta / 2), y+\delta)$.
Case 2. $f_{n}\left(x_{n}\right) \leqslant f\left(x_{n}\right)-\epsilon$. By proceeding as in Case 1 one shows that

$$
f_{n}(x)-f(x)<-\epsilon / 3 \quad \text { for all } \quad x \text { in }(y-\delta, y-(\delta / 2))
$$

In either case $\left|f_{n}(x)-f(x)\right|>\epsilon / 3$ for all x in an interval of length $\delta / 2$. Thus $\int_{a}^{b}\left|f_{n}(x)-f(x)\right|^{p} d x>(\epsilon / 3)^{p} \cdot \delta / 2$ for all $n \geqslant N$, which contradicts $\lim _{n \rightarrow \infty} \int_{a}^{b}\left|f_{n}(x)-f(x)\right|^{p} d x=0$. This completes the proof.

2. The General Convergence Theorem

It is natural to try to generalize Theorem 1 by replacing the monotonicity condition with convexity or with monotonicity of higher order. (f_{n} is convex on (a, b) iff

$$
f_{n}\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \leqslant \alpha f_{n}\left(x_{1}\right)+(1-\alpha) f_{n}\left(x_{2}\right)
$$

whenever $a<x_{1} \leqslant x_{2}<b$ and $0 \leqslant \alpha \leqslant 1$.) Monotonicity of higher order can be defined in terms of divided differences (a discussion of divided differences can be found in books on numerical analysis, e.g. [1]). The first-order divided difference of f_{n} is $f_{n}\left[x_{0}, x_{1}\right]=\left[f_{n}\left(x_{1}\right)-f_{n}\left(x_{0}\right)\right] /\left(x_{1}-x_{0}\right)$. Clearly f_{n} is increasing on (a, b) iff $f_{n}\left[x_{0}, x_{1}\right] \geqslant 0$ for all distinct x_{0}, x_{1} in (a, b). The second-order divided difference of f_{n} is

$$
f_{n}\left[x_{0}, x_{1}, x_{2}\right]=\left(f_{n}\left[x_{1}, x_{2}\right]-f_{n}\left[x_{0}, x_{1}\right]\right) /\left(x_{2}-x_{0}\right)
$$

It is straightforward to verify that f_{n} is convex on (a, b) iff $f_{n}\left[x_{0}, x_{1}, x_{2}\right] \geqslant 0$
for all distinct x_{0}, x_{1}, x_{2} in (a, b). The k th order $(k \geqslant 1)$ divided difference of f_{n} can be expressed by the following formula:

$$
\begin{equation*}
f_{n}\left[x_{0}, x_{1}, \ldots, x_{k}\right]=\sum_{j=0}^{k}\left[f_{n}\left(x_{j}\right) / \prod_{\substack{i=0 \\ i \neq j}}^{k}\left(x_{j}-x_{i}\right)\right] \tag{1}
\end{equation*}
$$

Monotonicity of f_{n} of order $k \geqslant 1$ on (a, b) is the condition that either $f_{n}\left[x_{0}, \ldots, x_{k}\right] \geqslant 0$ for all distinct x_{0}, \ldots, x_{k} in (a, b) or $f_{n}\left[x_{0}, \ldots, x_{k}\right] \leqslant 0$ for all such x_{0}, \ldots, x_{k}. (It is known that monotonicity of f_{n} of order $k \geqslant 2$ on (a, b) implies that $f_{n}^{(k-2)}$ exists and is continuous on (a, b), cf. [2, p. 381]). Our main result is the generalization of Theorem 1 by replacing "increasing" with monotonicity of order k. For completeness we have included in the statement of the theorem two other conditions which imply monotonicity of order k.

Denote by $\Delta_{h}^{k} f_{n}(x)$ the forward difference of k th order of f_{n} using $x, x+h, \ldots, x+k h$ (cf. [1, p. 214]).

Theorem 2. Let f be a real, continuous function on the finite interval (a, b). Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of real functions such that $\lim _{n \rightarrow \infty} \int_{a}^{b}\left|f_{n}(x)-f(x)\right|^{p} d x=0$, where $0<p<\infty$. Then for any c and d with $a<c<d<b$, each of the following conditions implies that $\left\{f_{n}\right\}$ converges uniformly to f on $[c, d]$:
(1) There exists a positive integer k such that $f_{n}^{(k)}(x)$ exists and is $\geqslant 0$ for all x in (a, b) and for all $n \geqslant 1$.
(2) Each f_{n} is bounded in (a, b) and there exists a positive integer k such that if $h>0$ and x and $x+k h$ are in (a, b), then $\Delta_{h}{ }^{k} f_{n}(x) \geqslant 0$ for all $n \geqslant 1$.
(3) There exists a positive integer k such that $f_{n}\left[x_{0}, \ldots, x_{k}\right] \geqslant 0$ for all distinct x_{0}, \ldots, x_{k} in (a, b) and for all $n \geqslant 1$.

Proof. We will show that (1) implies (3), (2) implies (3), and (3) implies the conclusion of the theorem.
(a) That (1) implies (3) follows from the fact that if x_{0}, \ldots, x_{k} are distinct points of (a, b) and $n \geqslant 1$, then $f_{n}\left[x_{0}, \ldots, x_{k}\right]=f_{n}^{(k)}(\xi) / k$! for some ξ in (a, b) (cf. [1, p. 210]).
(b) That (2) implies (3) is stated in [3, p. 49].
(c) To show that (3) implies the conclusion of the theorem, assume the conclusion is false. Then there exist c and d satisfying $a<c<d<b, \epsilon>0$, a subsequence of $\left\{f_{n}\right\}$ (again denoted by $\left\{f_{n}\right\}$), and a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of points in $[c, d]$ such that $\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right| \geqslant \epsilon$ for all n. The sequence $\left\{x_{n}\right\}$ has a convergent subsequence (again denoted by $\left\{x_{n}\right\}$) with limit, call it y, in $[c, d]$. By the continuity of f at y there exists δ with $0<\delta \leqslant \min \{c-a, b-d\}$ such that $|x-y|<\delta$ implies $|f(x)-f(y)|<\epsilon /(4 k+2)^{k+1}$.

Let $y_{i}=y+[i \delta /(2 k+1)]$ for all integral $i,-(2 k+1) \leqslant i \leqslant 3$. There exists an $N_{1} \geqslant 1$ such that for all $n \geqslant N_{1}$ there is a point $t_{n, i}$ in $\left(y_{2 i-1}, y_{2 i}\right)$, for $i=-k, \ldots,-1$, and a point $t_{n, 1}$ in $\left(y_{2}, y_{3}\right)$ satisfying $\left|f_{n}\left(t_{n, i}\right)-f\left(t_{n, i}\right)\right|<$ $\epsilon /(4 k+2)^{k+1}$ for all i. (If not, we would have a subsequence $\left\{f_{n_{i}}\right\}$ with $\left|f_{n_{j}}(x)-f(x)\right| \geqslant \epsilon /(4 k+2)^{k+1}$ for all x in an interval of length $\delta /(2 k+1)$; this would contradict $\lim _{n \rightarrow \infty} \int_{a}^{b}\left|f_{n}(x)-f(x)\right|^{p} d x=0$.) Notice

$$
\left|f_{n}\left(t_{n, i}\right)-f(y)\right| \leqslant\left|f_{n}\left(t_{n, i}\right)-f\left(t_{n, i}\right)\right|+\left|f\left(t_{n, i}\right)-f(y)\right|<\frac{2 \epsilon}{(4 k+2)^{k+1}}
$$

Since $\left\{x_{n}\right\}$ converges to y, there exists an $N_{2} \geqslant 1$ such that if $n \geqslant N_{2}$ then $\left|x_{n}-y\right|<\delta /(2 k+1)$. Let $n \geqslant \max \left\{N_{1}, N_{2}\right\}$.

Case 1. $f_{n}\left(x_{n}\right) \leqslant f\left(x_{n}\right)-\epsilon$. We show $f_{n}\left[t_{n,-k}, \ldots, t_{n,-1}, x_{n}\right]<0$. For notational convenience set $t_{n, 0} \equiv x_{n}$.

Since a constant can be subtracted from a function without changing its divided difference of any order, we have

$$
\begin{aligned}
& f_{n}\left[t_{n,-k}, \ldots, t_{n,-1}, x_{n}\right] \\
&=\left(f_{n}-f(y)\right)\left[t_{n,-k}, \ldots, t_{n,-1}, x_{n}\right] \\
&=\frac{f_{n}\left(x_{n}\right)-f(y)}{\prod_{i=-k}^{-1}\left(x_{n}-t_{n, i}\right)}+\sum_{j=-k}^{-1} \frac{f_{n}\left(t_{n, j}\right)-f(y)}{\prod_{i--k, i \neq j}^{0}\left(t_{n, j}-t_{n, i}\right)} \\
&=\frac{f_{n}\left(x_{n}\right)-f\left(x_{n}\right)}{\prod_{i=-k}^{-1}\left(x_{n}-t_{n, i}\right)}+\frac{f\left(x_{n}\right)-f(y)}{\prod_{i=-k}^{-1}\left(x_{n}-t_{n, i}\right)}+\sum_{j=-k}^{-1} \frac{f_{n}\left(t_{n, j}\right)-f(y)}{\prod_{i=-k, i \neq j}^{0}\left(t_{n, j}-t_{n, i}\right)} \\
&<\frac{-\epsilon}{(2 \delta)^{k}}+\frac{\epsilon /(4 k+2)^{k+1}}{(\delta /(2 k+1))^{k}}+k \frac{2 \epsilon /(4 k+2)^{k+1}}{(\delta /(2 k+1))^{k}} \\
&=\frac{\epsilon}{(2 \delta)^{k}}\left[-1+\frac{(2 k+1)^{k} 2^{k}(1+2 k)}{(4 k+2)^{k+1}}\right]<0 .
\end{aligned}
$$

This contradicts hypothesis (3).
Case 2. $f_{n}\left(x_{n}\right) \geqslant f\left(x_{n}\right)+\epsilon$. By proceeding as in Case 1 one shows that $f_{n}\left[t_{n,-(k-1)}, \ldots, t_{n,-1}, t_{n, 1}, x_{n}\right]<0$, a contradiction. This completes the proof.

References

1. S. D. Conte and C. de Boor, "Elementary Numerical Analysis: An Algorithmic Approach," McGraw-Hill, New York, 1972.
2. S. Karlin and W. J. Studden, "Tchebycheff Systems: With Applications in Analysis and Statistics," Interscience, New York, 1966.
3. T. Popoviciu, "Les Fonctions Convexes," Hermann, Paris, 1945.
